The Impact of Glycosyl-Phosphatidyl-Inositol Anchored MICA Alleles on Novel NKG2D-Based Therapies
نویسنده
چکیده
NKG2D is an activating receptor present in all human NK cells, CD8+ T cells, and in certain populations of CD4 T cells, and engagement of this receptor with its ligands is a crucial step in the regulation of both innate and specific immune responses [for review, see Ref. (1)]. NKG2D recognizes two families of MHC-related molecules, whose expression is, in general, upregulated when the cells suffer different types of stress including infection and tumorigenesis. In fact, a large variety of primary tumors and tumor-derived cell lines express NKG2D-ligands and, in the last few years, many reports have established correlations between the presence of NKG2Dligands in cancer patient serum and disease prognosis [for review, see Ref. (2)]. The presence of NKG2D-ligands in serum is related to another important feature of these molecules: they can be released to the supernatant by either metalloprotease cleavage or incorporated in nanovesicles (exosomes), depending on their biochemical features [for review, see Ref. (3)]. However, it is still not understood why NKG2D-ligands are, in some instances, secreted while in other cases they remain at the cell surface, and understanding the cellular “decisions” on the pathways followed by these molecules will be of crucial importance in the choice of novel therapies based on NKG2D, such as monoclonal antibodies or NKG2D-CARs [for review, see Ref. (4)], since soluble ligands could interfere with these therapies in different manners depending on their biological form. In this sense, detailed study of the differential features of each individual NKG2D-ligand is still needed and investigation of the mechanisms used by different viral gene products to interfere with NKG2D-ligand expression will likely be critical in uncovering these cell biology issues.
منابع مشابه
Glycosyl-Phosphatidyl-Inositol (GPI)-Anchors and Metalloproteases: Their Roles in the Regulation of Exosome Composition and NKG2D-Mediated Immune Recognition
Communication within the immune system depends on the release of factors that can travel and transmit information at points distant from the cell that produced them. In general, immune cells use two key strategies that can occur either at the plasma membrane or in intracellular compartments to produce such factors, vesicle release and proteolytic cleavage. Release of soluble factors in exosomes...
متن کاملA GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008.
The human MICA (MHC I-related chain A) gene, encoding a ligand for the NKG2D (NKG2-D type II integral membrane protein) receptor, is highly polymorphic. A group of MICA alleles, named MICA 5.1 (prototype, MICA*008), produce a truncated protein due to a nucleotide insertion in the transmembrane domain. These alleles are very frequent in all of the human populations studied and they have differen...
متن کاملIdentification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses.
Proteins such as aminopeptidases and alkaline phosphatases, both glycosyl-phosphatidyl-inositol (GPI) anchored proteins, were previously identified as Cry1Ac binding proteins in the Heliothis virescens midgut. To identify additional toxin binding proteins, brush border membrane vesicles from H. virescens larvae were treated with phosphatidyl inositol phospholipase C, and released proteins were ...
متن کاملSynthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs
Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...
متن کاملSynthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs
Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015